Ардуино для фрезерного станка

Содержание
  1. ЧПУ станок своими руками на базе arduino. Пошаговая инструкция + видео
  2. Проект №11. Самодельный ЧПУ плоттер на Arduino: 4xiDraw.
  3. Проект №10.ЧПУ плоттер в виде принтера на Arduino
  4. Проект №9. ЧПУ станок для раскраски пасхальных яиц на Arduino.
  5. Проект №8. ESP32 GRBL плоттер.
  6. Проект №7. ЧПУ плоттер на Arduino своими руками.
  7. Проект №6. Лазерный гравер на ESP32. Прошивка GRBL_ESP32.
  8. Проект №5. Самодельный Лазерный гравёр с ЧПУ, в домашних условиях
  9. Проект №4. Самодельный ЧПУ фрезерный станок на Arduino с дисплеем
  10. Проект №3. Самодельный CNC станок из мебельных направляющих на базе Arduino UNO
  11. Проект №2. Лазерный гравировальный станок с ЧПУ (шаговые двигателя от матричного принтера)
  12. Проект №1. Мой первый ЧПУ станок из матричных принтеров (Не удачная версия)
  13. Как сделать ЧПУ станок на «Ардуино» в домашних условиях?
  14. Что такое Arduino?
  15. Разработка электроники
  16. Что нужно для создания фрезерного станка на «Ардуино» своими руками?
  17. ЧПУ-станок своими руками на базе Arduino: пошаговая инструкция
  18. Как сделать ЧПУ-станок для выжигания на различных материалах?
  19. Преимущества использования Arduino при создании ЧПУ-станков своими руками?
  20. Создание станка с ЧПУ из доступных деталей с минимум слесарной работы

ЧПУ станок своими руками на базе arduino. Пошаговая инструкция + видео

Все мои статьи с видео про создание ЧПУ станков на одной странице. Своего рода инструкция.

Данная страница будет пополняться. Не забудьте добавить ее в закладки!

Проект №11. Самодельный ЧПУ плоттер на Arduino: 4xiDraw.

Проект №10.ЧПУ плоттер в виде принтера на Arduino

Проект №9. ЧПУ станок для раскраски пасхальных яиц на Arduino.

Проект №8. ESP32 GRBL плоттер.

Проект №7. ЧПУ плоттер на Arduino своими руками.

Проект №6. Лазерный гравер на ESP32. Прошивка GRBL_ESP32.

Проект №5. Самодельный Лазерный гравёр с ЧПУ, в домашних условиях

Проект №4. Самодельный ЧПУ фрезерный станок на Arduino с дисплеем

Проект №3. Самодельный CNC станок из мебельных направляющих на базе Arduino UNO

Получив опыт создания самодельных ЧПУ станков. Определился с какой электроникой мне проще работать. Решил вложить немного денег и с делать фрезерный CNC станок на мебельных направляющих .

Заготовке вырезанные на данном ЧПУ станке можно посмотреть тут.

Готовые проекты сотрите тут.

Комплектующие ЧПУ :

Проект №2. Лазерный гравировальный станок с ЧПУ (шаговые двигателя от матричного принтера)

После своего первого опыта в разработке ЧПУ станков, решил собрать самодельный лазерный гравировальный ЧПУ станок . По моим подсчетам данный станок самый простои и дешевый по комплектующим. Собирал я его поэтапно и снимал видео инструкцию по сборке ЧПУ . Все моменты сборки ЧПУ не возможно осветить, но я постарался рассказать про основные.

Для управления использовал электронику: Arduino UNO + CNCshield v3 + драйвера A4988

Недорогую электронику для ЧПУ можно купить в Китае >>>

Проект №1. Мой первый ЧПУ станок из матричных принтеров (Не удачная версия)

Для проверки своих сил собрал ЧПУ станок из того что было под рукой. Дополнительно затратил денег не больше 3 тыс. руб.

Станок работал. Но работа была не очень хорошего качества и было много ограничений по функционалу. Но что можно ожидать от CNC станка за 3 000 руб.

Для сборки ЧПУ станка из деталей от принтера были использовано:

  1. 3 Матричных принтера формата А3.
  2. Мебельные направляющие: 2 пары 500 мм. И одна пара на 300 мм.
  3. Доска 25х100, брусок 25х25, фанера толщиной 8 мм.
  4. Блок питания от компьютера.
  5. Arduino NANO
  6. Драйвера L298 4 шт.
  7. Строительные и мебельные уголки.
  8. Саморезы, винты, гайки и шпилька М10.
  9. Телефонные провода, провода из компьютера.
  10. Переменный резистор из автомобиля.
  11. Двигатель от автомобильного компрессора.
  12. Шаговый двигатель от сканера .
  13. Латунная цанга.

Понравилась статья? Поделитесь ею с друзьями:

Источник

Как сделать ЧПУ станок на «Ардуино» в домашних условиях?

«Ардуино» позволяет управлять различными шаговыми двигателями и периферийными устройствами, которые предназначены для создания ЧПУ-аппаратов. К таким относятся лазерные граверы, фрезерные и токарные станки и т. д.

Что такое Arduino?

Arduino – это сочетание аппаратной и программной частей. Его используют для упрощения разработки электроники.

К аппаратной части относятся различные платы Arduino, в которых есть программируемые микроконтроллеры, и дополнительные модули. Программная часть включает в себя среду разработки на довольно простом языке программирования, а также большое количество уже готовых библиотек.

После создания «Ардуино» быстро получило успех. Открытая архитектура позволяет создавать микроконтроллеры и делать прошивки абсолютно всем заинтересованным людям. Схемы и код находятся в открытом доступе. После широкого распространения большое количество производителей электроники стали использовать Arduino и для своей продукции.

После попадания на китайский рынок платы стали намного дешевле и получили еще большее распространение. Сейчас в интернете Arduino продается по цене от 70 рублей.

Разработка электроники

Плату можно собрать самостоятельно или же приобрести готовый вариант, что намного практичнее и выгоднее. Программное обеспечение на нее устанавливается через компьютер.

Написание программ осуществляет упрощенной версии языка С++.

Но для создания ЧПУ необязательно его знать, так как есть уже готовые библиотеки в свободном доступе. Кроме того, для более простой работы существует множество функций, классов, операторов и методов.

К электронике ЧПУ относятся шаговые двигатели, драйверы для них, провода и непосредственно плата «Ардуино».

Что нужно для создания фрезерного станка на «Ардуино» своими руками?

Лучше всего приобрести готовый набор Arduino Uno и CNC Shield v3, предназначенный для ЧПУ. В него входит следующее:

  1. Плата Arduino Uno.
  2. USB-кабель для соединения с ПК.
  3. Плата расширения CNC Shield v3.
  4. Драйверы DRV8825 или A4988.
  5. Шаговые двигатели с 4 контактами.
  6. Компьютер. Он понадобится для загрузки прошивки.
  7. Блок питания, предназначенные для работы двигателей. Чаще всего используют 12В и 3А.

ЧПУ-станок своими руками на базе Arduino: пошаговая инструкция

Первым делом припаивается CNC Shield к «Ардуино», как показано на картинке ниже.

Теперь нужно продублировать ось. С помощью CNC Shield можно для любой оси распараллеливать шаговые двигатели. Благодаря этому появляется возможность реализации проектов с 2 моторами на ось без дополнительных проблем.

Напротив нужной оси необходимо установить 2 джампера.

Теперь можно переходить к настройке тока драйверов для моторов. Самые распространенные и дешевые драйверы для двигателей – А4988. Но у них есть 2 больших минуса:

  • максимальный микрошаг составляет 1/16;
  • шумят во время работы.

С драйверами DRV8825 можно создать более точную систему. При этом они намного меньше шумят.

Во время использования драйверов нужно помнить, что они имеют разную ориентацию. Чтобы не запутаться, необходимо смотреть на подстроечный резистор.

Чтобы настроить ток, необходимо:

  1. Установить драйверы на CNC Shield.
  2. С помощью кабеля подключиться к компьютеру.

Основные моменты, которые следует учитывать при настройке:

  1. Процедура важна для корректной работы шаговых двигателей, уменьшения вероятности пропуска шага, снижения нагрева.
  2. Выполняется настройка только при полном шаге, микрошаг не учитывается.
  3. Каждый драйвер настраивается отдельно и именно в том слоте, где он будет работать.

После окончания процедуры нужно убрать драйверы.

На следующем этапе производится настройка микрошага. Главные моменты, которые следует учитывать:

  1. Если повышать значение микрошага, будет снижаться крутящий момент на двигателе.
  2. Большие показатели микрошага не приводят к кратному повышению точности работы, так как на подвижных частях конструкции присутствует люфт.

После настройки микрошага нужно обратно установить драйверы.

Теперь необходимо подключить питание. Кроме соединения платы с компьютером, нужно подать напряжение в 12В.

На CNC Shield v3 это можно сделать одним из следующих способов:

  • использовать DC-разъем для подсоединения блока питания;
  • подключить блок питания непосредственно к колодке при помощи проводов.

Для небольших проектов лучше использовать первый вариант. Второй предназначен для более мощных станков.

Теперь переходят к подключению шаговых двигателей. Осуществляется это при помощи разъемов Dupont, которые имеют 4 контакта. Если у двигателей нет разъемов, придется их обжать самостоятельно.

Двигатель нужно подсоединять в слот, который расположен рядом с драйвером.

Далее необходимо загрузить прошивку GRBL для контроллера. Ее скачивают и загружают в «Ардуино».

После проверки вращения двигателей переходят к их установке на опорной раме. Лучше всего использовать раму с полной опорой. Такая конструкция применяется во многих профессиональных станках. Она достаточно жесткая, не прогибается под нагрузками.

Использование шилдов позволяет значительно расширить функционал фрезера. Чаще всего их делают под форм-фактор платы. Можно одновременно применять и несколько шилдов. Спектр применения весьма широк:

  1. Обеспечение независимой работы от компьютера.
  2. Подключение периферийных устройств.
  3. Вывод информации на периферийные устройства непосредственно с «Ардуино».
  4. Одновременное управление большим количеством двигателей.
  5. Хранение и обработка объемной информации.
  6. Подключение к Wi-Fi.
  7. Подключение антенн мобильной сети.
  8. Воспроизведение музыки на «Ардуино» и др.

ВАЖНО . Во время подключения шилдов необходимо быть осторожным, чтобы не повредить плату «Ардуино».

Как сделать ЧПУ-станок для выжигания на различных материалах?

Станок для выжигания работает при помощи лазера, который фокусирует луч на поверхности материала. Обычно фокусная не более 0,001 дюйма.

Принцип изготовления и прошивки такой же, как и при создании фрезера. Только вместо фрезера используют лазер мощностью от 5,5 ватт.

При правильной настройке скорость работы лазерного станка для выжигания составляет 10 метров в минуту. Ее можно увеличить, если управлять работой устройства с ноутбука, убрав LPT-кабель.

Преимущества использования Arduino при создании ЧПУ-станков своими руками?

  • небольшая стоимость платы;
  • среда программирования простая и удобная, подходит и для новичков;
  • кросс-платформенность.

Самостоятельно изготовить ЧПУ-станок можно. Это сэкономит довольно много средств, но полностью бесплатно сделать его не получится, так как некоторые части в домашних условиях изготовить невозможно. Но в сравнении с фабричными моделями экономия настолько большая, что это стоит потраченного времени.

Источник

Создание станка с ЧПУ из доступных деталей с минимум слесарной работы

Продолжаем обзор деятельности нашего Хакспейс-клуба.

Мы давно мечтали купить в наш клуб ЧПУ станок. Но решили его сделать сами. С нуля, начиная от железа и кончая программного обеспечение (прошивка контроллера и управляющая программа). И у нас это получилось.

Детали для станка старались выбирать из доступных в свободной продаже, многие из которых даже не требуют дополнительной слесарной обработки.

Контроллер мы выбрали Arduino Mega 2560 и что бы много не думать, драйвер шаговых двигателей использовали RAMPS 1.4 (как у RepRap 3D принтера).

Программу контроллера писали по алгоритму метода конечных автоматов. Последний раз я о нем слышал лет 20 назад в институте, не помню по какому предмету изучали. Это была очень удачная идея. Код получился маленький и легко расширяемый без потери читабельности (если в дальнейшем понадобится не только оси XYZ, или использовать другой G-код). Программа контроллера принимает с USB порта G-код и, собственно, дает команду двигателям осей XYZ двигаться в заданном направлении. Кто не знает, G-код — это последовательность конструкций типа G1X10Y20Z10, которая говорит станку переместится по оси X на 10 мм, Y на 20 мм и Z на 10 мм. На самом деле, в G-коде много различных конструкций (например, G90 — используется абсолютная система координат, G91 — относительная) и много модификаций самого кода. В интернете много о нем описано.

Подробнее остановлюсь на описание скетча (прошивка контроллера).

Вначале в описании переменных прописываем, к какому выходу контроллера будет подключены двигатели и концевые выключатели.

В этом коде метода конечных автоматов переменная принимает значение ждать с USB порта первый байт, во второй конструкции case производится проверка наличия данных и переменная _s принимает значение get_cmd. Т.е считать данные с порта.

Далее считываем все, что есть в порту, переменная _s устанавливается в get_tag; т.е. переходим на прием буквенного значение G – кода.

Завершается конечный автомат конструкцией case run_cmd: где собственно и подается управляющий сигнал на двигатель. Управлением двигателем можно было бы использовать библиотеку #include но мы написали свою функцию(char impstep -для биполярного двигателя, void UNIimpstep — униполярного ), что бы можно было не ждать пока один двигатель отработает, что бы послать сигнал другому. Ну и на будущее, отдельная процедура позволит гибче использовать возможностями шагового двигателя. Например, если будем использовать другой драйвер двигателя программно задавать полушаг или шаг двигателя. В нынешнем исполнении с RAMPS получается 1/16 шага. Если кому интересно, про управление шаговыми двигателями можно отдельную статью часами писать.

Двигатели использовали 17HS8401, самые мощные из NEMA17, которые смогли на ebay найти. Там же купили подшипники и оптические концевики.


Все остальное отечественное, родное. Оригинальная идея с направляющими, сделали их из длинных хромированных ручек для мебели, они как раз диаметром 12 мм под подшипники, длиной они продаются до метра, и прочности вполне хватает. В торцах ручек просверлили отверстия и метчиком нарезали резьбу. Это позволило просто болтом надежно соединить направляющие с несущим конструктивом. Для оси Z так вообще ручку прикрепили к пластине конструктива целиком, Вал продается в любом строительном магазине как шпилька с резьбой любого диаметра. Мы использовали на 8 мм. Соответственно и гайки 8 мм. Гайку с подшипником и несущим конструктивом оси Y соединили с помощью соединительной скобы. Скобы купили в специализированном магазине для витрин. Видели наверно такие хромированные конструкции в магазинах стоят на которых галстуки или рубашки висят, вот там используются такие скобы для соединения хромированных трубок. Двигатель соединили с валом муфтой, которую сделали из куска стального прута диаметром 14мм, просверлив по центру отверстие и пару отверстий сбоку, для зажимания винтами. Можно не заморачиваться и купить готовые на ebay по запросу cnc coupling их куча выпадает. Несущий конструктив нам вырубили на гильотине за 1000 р. Сборка всего этого заняло не много времени и получили на выходе вот такой станок, на фото еще не установлены концевики, контроллер и не установлен двигатель фрезы.

Точность получилась просто изумительная, во-первых шаговый двигатель шагает 1/16 шага, во-вторых вал с мелкой резьбой. Когда в станок вставили ручку вместо фрезы, он нарисовал сложную фигуру, потом еще несколько раз обвел эту фигуру, а на рисунке видно как будто он один раз рисовал, под лупой рассматривали пытались другую линию найти. Жесткость станка тоже хорошая. Шатается только в пошипниках в допустимых пределах их собственого допуска и посадки. Немного шатается еще по оси Y, ну здесь я думаю конструктив оси Z надо доработать.

Фото получилось не качественное, на заднем плане стекло отражает. Не знаю какой я конструктор станка, но фотограф я просто никакой. Вот чуть получше.

Теперь об управляющей программе. Не помню почему, но мы решили сделать свою программу, которая готовый G-код с компьютера передает в контроллер. Может просто не нашли подходящий.

Программа написана на Microsoft Visual C++, использовалась библиотеки:

Module: SERIALPORT.H
Purpose: Declaration for an MFC wrapper class for serial ports
Copyright 1999 by PJ Naughter. All rights reserved.
Программа еще сырая, ну в двух словах используем

Использовался еще стандартный компонент msflexgrid таблица, в которую в реальном времени заносится выполняемый в настоящий момент G-код. Т.е. эта программа просто открывает готовый G-код и маленькими порциями запихивает его в контроллер.

Исходный код управляющей программы можно посмотреть здесь github.com/konstantin1970/cnc.git
Для понимания добавлю еще, что стандартный windows hyperterminal или putty делает то-же самое, запихивает данные в контроллер.
Сам G-код можно сделать в любой CAD/CAM системе например, мне понравился ARTCAM.

В планах у нас сделать более мощный станок на двигателях NEMA 23, но для этого нужно придумать, из чего делать более мощные направляющие. В прошивке контроллера добавить возможность изменять скорость вращения шпинделя. Особенно интересно нам установить камеру и сделать что-то подобное системе технического зрения, что бы станок сам определял размеры заготовки, вычислял начальную координату заготовки по всем осям в программе минимум. В программе максимум, чтобы с помощью камеры станок контролировал все этапы своей работы, возможно даже принимал решения изменить программу. Ну, например, увидел он, что шероховатость больше допустимого, взял и послал фрезу по второму кругу все отшлифовать с более высокой скоростью.

Надеюсь, сможем и в дальнейшем делиться своими разработками с вами уважаемые хаброчитатели.

Источник

Читайте также:  Правильное бритье лица станком
Оцените статью